Extensions 1→N→G→Q→1 with N=C6 and Q=C324C8

Direct product G=N×Q with N=C6 and Q=C324C8
dρLabelID
C6×C324C8144C6xC3^2:4C8432,485

Semidirect products G=N:Q with N=C6 and Q=C324C8
extensionφ:Q→Aut NdρLabelID
C6⋊(C324C8) = C2×C337C8φ: C324C8/C3×C12C2 ⊆ Aut C6432C6:(C3^2:4C8)432,501

Non-split extensions G=N.Q with N=C6 and Q=C324C8
extensionφ:Q→Aut NdρLabelID
C6.1(C324C8) = C72.S3φ: C324C8/C3×C12C2 ⊆ Aut C6432C6.1(C3^2:4C8)432,32
C6.2(C324C8) = C2×C36.S3φ: C324C8/C3×C12C2 ⊆ Aut C6432C6.2(C3^2:4C8)432,178
C6.3(C324C8) = C337C16φ: C324C8/C3×C12C2 ⊆ Aut C6432C6.3(C3^2:4C8)432,231
C6.4(C324C8) = He34C16central extension (φ=1)1443C6.4(C3^2:4C8)432,33
C6.5(C324C8) = C2×He34C8central extension (φ=1)144C6.5(C3^2:4C8)432,184
C6.6(C324C8) = C3×C24.S3central extension (φ=1)144C6.6(C3^2:4C8)432,230

׿
×
𝔽